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Abstract. The impact of Hartree-Fock correlations on the nuclear momentum distribution is studied in
a fully relativistic one-boson-exchange model. Hartree-Fock equations are exactly solved to first order in
the coupling constants. The renormalization of the Dirac spinors in the medium is shown to affect the
momentum distribution, as opposed to what happens in the non-relativistic case. The unitarity of the
model is shown to be preserved by the present renormalization procedure.
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It is well known that in a non-relativistic framework
the momentum distribution of nuclear matter is not af-
fected by the Hartree-Fock (HF) field. This arises because,
due to general invariance principles [1], the non-relativistic
self-energy cannot depend on spin in an infinite system:
hence the single-nucleon wave functions are not modified
and only the energy-momentum relation is affected by the
medium. Of course, correlations in the nuclear wave func-
tion beyond the mean-field approximation are very im-
portant already at the non-relativistic level [2–4]. Due to
such correlations, the momentum distribution is reduced
for momenta below kF and the states above kF acquire
small but finite occupation probabilities.

Although the momentum distribution is not an ob-
servable, it is also true that over the years electron scat-
tering reactions have frequently been expressed in terms
of momentum densities. In recent work [5,6] we have eval-
uated the impact of mesonic correlations and meson ex-
change currents (MEC) on the electroweak response func-
tions within a fully relativistic, gauge-invariant model. We
have shown that the consistency of the theory necessar-
ily implies the inclusion in the calculation of Hartree-Fock
self-energy insertions. In order to deal properly with the
divergencies associated with these diagrams, not only the
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energy but also the nucleon wave functions must be renor-
malized by the medium. As a consequence, in a relativistic
HF framework, the momentum distribution is also modi-
fied for k < kF, since now the Dirac four-spinors describ-
ing the nucleons display new features and the self-energy
becomes spin dependent. The aim of this paper is to quan-
tify this genuine relativistic effect in a one-boson-exchange
model for the NN interaction, while the corresponding ob-
servable consequences on the response functions were an-
alyzed in depth in [5,6].

An unambiguous treatment of relativistic Hartree-
Fock does not exist in the literature, since the presence
of the Dirac sea requires (at least) the specification of a
prescription to take it into account [7]. The approach we
use is equivalent to that used in [7,8], where the nucleon
proper self-energy is calculated in terms of positive-energy
spinors only. This approximation is valid in the first it-
eration of a fully self-consistent calculation to which we
confine ourselves in this work. This procedure was shown
in [7] to reproduce the non-relativistic HF equations in
the limit M → ∞, and it reduces the relativistic Hartree
approximation to the mean-field theory.

The proton momentum distribution of nuclear matter
in the independent-particle approximation is

n(p) =
∑
k,s

ψ†
k,s(p)ψk,s(p)θ(kF − k) , (1)



422 The European Physical Journal A

where kF is the Fermi momentum. Since we are focus-
ing on symmetric nuclear matter the neutron and proton
momentum distributions are equal. For a free relativistic
Fermi gas, in momentum space the wave function describ-
ing a nucleon with momentum k and spin s is given by

ψk,s(p) =
∫

V

drψk,s(r)e−ip·r =√
m

V Ek
us(k,m)

∫
V

drei(k−p)·r =√
V m

Ek
us(p,m)δk,p , (2)

where V is the volume enclosing the system, us(k,m) is
the free Dirac spinor (�Kus = mus) and Ek =

√
k2 +m2

is the free energy of the nucleon. We use the Bjorken and
Drell [9] conventions for the spinor normalization, ūu = 1.
Therefore, the wave function in coordinate space is nor-
malized to one:

∫
V

drψ†
k,s(r)ψk,s(r) = 1.

The wave function of eq. (2), inserted in eq. (1), yields
the well-known result

n(p) = V
∑
k,s

m

Ek
u†s(p,m)us(p,m)θ(kF − p)δp,k =

2V θ(kF − p) . (3)

In an interacting system, in the relativistic HF ap-
proximation, the above distribution is modified, since the
single-particle wave functions are renormalized by the in-
teraction with the other nucleons in the medium. In this
case, the Dirac equation in the nuclear medium is given
by

[�P −m−Σ(P )]φ̃s(p) = 0 , (4)

where φ̃s(p) is the renormalized spinor and Σ(P ) is the
self-energy of a nucleon in nuclear matter. According to
general symmetry properties Σ(P ) can be written in the
form [8,10]

Σ(P ) = mA(P ) +B(P )γ0p0 − C(P )γ · p . (5)

Using the above decomposition the Dirac equation (4)
can be recast as

[1 − C(P )] [γ0f0(P ) − γ · p − m̃(P )] φ̃s(p) = 0 , (6)

where the functions

f0(P ) =
1 −B(P )
1 − C(P )

p0 , (7)

m̃(P ) =
1 +A(P )
1 − C(P )

m (8)

have been introduced.
Equation (6) has the same structure as the free Dirac

equation; hence for the positive-energy eigenvalue one has

f2
0 (P ) = p2 + m̃2(P ) , (9)

which implicitly yields, using eq. (7), the new dispersion
relation for the renormalized energy p0 = ε(p) of the nu-
cleon in the nuclear medium:

p0 =
1 − C(P )
1 −B(P )

√
p2 + m̃2(P ) . (10)

The corresponding positive-energy spinor reads (see
refs. [5,6] for details)

φ̃s(p) ≡ ũs(p, m̃(p)) =
√
Z2(p)

(
Ẽ(p) + m̃(p)

2m̃(p)

)1/2

×
 χs

σ · p
Ẽ(p) + m̃(p)

χs

 =
√
Z2(p)us(p, m̃(p)) , (11)

where the function m̃(p) of the three-momentum p is ob-
tained from the Dirac mass in eq. (8) by setting p0 = ε(p)

m̃(p) ≡ m̃(ε(p),p) (12)

and
Ẽ(p) ≡ f0(ε(p),p) =

√
p2 + m̃2(p) (13)

represents the nucleon’s Dirac energy. The field strength
renormalization constant,

√
Z2(p), in eq. (11) is obtained

from the renormalized nucleon propagator [6,11] and reads

Z2(p) = Res
1

[1 − C(P )][f0(P ) − Ẽ(P )]

∣∣∣∣∣
p0=ε(p)

=
[
1 −B − p0

∂B

∂p0
−m

m̃

Ẽ

∂A

∂p0
+

p2

Ẽ

∂C

∂p0

]−1

p0=ε(p)

. (14)

In the relativistic Hartree-Fock model the free spinors
are used to compute the first approximation to the self-
energy. This is then inserted in the Dirac equation to get
new spinors, and so on. This self-consistent procedure has
to be dealt with numerically.

The resulting momentum distribution is then obtained
with the renormalized wave functions

ψ̃k,s(p) =
∫

V

dr ψ̃k,s(r)e−ip·r =√
V m̃(p)

Ẽ(p)
ũs(p, m̃(p))δk,p (15)

and reads

ñ(p) =
∑
k,s

ψ̃†
k,s(p)ψ̃k,s(p)θ(k̃F − p) , (16)

where k̃F, m̃(p) and Ẽ(p) are the nucleon’s renormalized
Fermi momentum, mass and energy, respectively. From
eqs. (16),(15),(11) the HF momentum distribution is then
found to be

ñ(p) = 2V Z2(p)θ(k̃F − p) , (17)
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which clearly reproduces the free result in eq. (3) for
Z2(p) = 1 and k̃F = kF.

Note that the HF wave function with the spinor (11)
is not normalized to unity. Indeed∫

V

drψ̃†
k,s(r)ψ̃k,s(r) =

m̃(p)

Ẽ
ũ†s(k, m̃(p))ũs(k, m̃(p)) = Z2(k) . (18)

However, the total number of nucleons must be conserved.
This implies that the unitarity condition∫

dp
(2π)3

ñ(p) = 2V
∫

dp
(2π)3

Z2(p)θ(k̃F − p) = Z (19)

must be fulfilled. Equation (19) can be viewed as the pro-
cedure to fix the HF Fermi momentum k̃F, which can in
principle be different from the free one.

Here we consider the first-order correction to the mo-
mentum distribution arising from the HF series. We shall
focus on mesonic correlations, induced by the exchange of
π, ρ, ω and σ, associated with the following interaction
Lagrangian [12]:

L(x) = ψ̄(x)
{ gπ

2m
γ5γµτ · ∂µπ(x)

+gρ

[
γµ − aρ

m
σµν∂ν

]
τ · ρµ(x)

+gωγ
µωµ(x) + gσσ(x)}ψ(x) . (20)

Using this Lagrangian, we compute the self-energy in
OBE approximation. For each meson i = π, ρ, ω, σ, the
corresponding self-energy functions Ai(P ), Bi(P ), Ci(P )
are given in the appendix. The total self-energy is obtained
from eq. (5) with A(P ) =

∑
i Ai(P ), B(P ) =

∑
i Bi(P )

and C(P ) =
∑

i Ci(P ). While the pion and rho self-
energies correspond to purely exchange (Fock) terms, the
sigma and omega also have a direct (Hartree) contribution
due to their isoscalar nature.

The HF energy ε(p), the solution of eq. (10), can be
computed analytically to first order in the squared meson-
nucleon coupling constant g2

i . For this purpose we note
that the functions Ai(P ), Bi(P ) and Ci(P ) are of order
O(g2

i ). Hence, the following expansion of the Dirac mass
in eq. (8) holds:

m̃(P ) = m [1 +A(P ) + C(P )] +O(g4
i ) . (21)

Inserting this into eq. (10) and expanding the right-hand
side to first order in g2

i , we get the equation

p0 � Ep +∆E(P ) , (22)

where

∆E(P ) =
1
Ep

[
m2A(P ) + E2

pB(P ) − p2C(P )
]
. (23)

Next we insert the value of p0 given by eq. (22) inside the
functions A(P ), B(P ), C(P ) and expand them around the

on-shell value p0 = Ep, neglecting terms of second order
in g2

i . We get

A(P ) � A(Ep +∆E,p) � A(Ep,p) ≡ A0(p) (24)

and likewise B(P ) � B0(p), C(P ) � C0(p). Inserting
these on-shell values into eq. (23), we finally obtain the
HF energy to first order

p0 � Ep +
1
Ep

[
m2A0(p) + E2

pB0(p) − p2C0(p)
]

= ε(p) .

(25)
We proceed now by expanding as well the renormal-

ized wave function, see eqs. (15),(11). For this purpose
we expand the Dirac mass in eq. (21) around the on-shell
energy

m̃(p) � m [1 +A0(p) + C0(p)] (26)

and likewise the Dirac energy Ẽ(p) defined in eq. (13)

Ẽ(p) =
1 −B

1 − C
ε(p) � Ep +

m2

Ep
[A0(p) + C0(p)] . (27)

Moreover, for the field strength renormalization of
eq. (14), we obtain

Z2(p) � 1 + α(p) (28)

with

α(p) ≡ B0(p) +
[
m2

Ep

∂A

∂p0
+ Ep

∂B

∂p0
− p2

Ep

∂C

∂p0

∣∣∣∣
p0=Ep

.

(29)
After some algebra the following first-order expression

for the HF wave function is obtained:

ψ̃k,s(p) �
√

m

Ep

[
1 +m

A0(p) + C0(p)
Ep

×Epγ0 −m

2Ep
+

1
2
α(p)

]
us(p,m)δk,p . (30)

The above expansion transparently displays the effect
of the self-energy on the free wave function. Indeed the sec-
ond term in the square brackets of eq. (30) corresponds to
a negative energy component with momentum p. Thus,
within the OBE potential approach the renormalized HF
spinors in the nuclear medium are characterized by two
new elements with respect to the bare us(p,m): the term
(Epγ0 − m)us(p,m), directly connected with the nega-
tive energy components in the wave function, and the
term α(p), arising from the field strength renormaliza-
tion

√
Z2(p). However, the negative energy component

does not contribute to the momentum distribution in first
order, where one simply gets

ñ(p) � 2V [1 + α(p)] θ(kF − p) . (31)

The explicit expression for the first-order expansion
of the function α(p) ≡ α(p) =

∑
i αi(p) is given in the

appendix. Note that the Hartree self-energy of the ω and
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σ does not contribute to α. The unitarity condition of
eq. (19) becomes

2V
∫

dp
(2π)3

Z2(p)θ(k̃F − p) =

V k̃3
F

3π2
+
V

π2

∫ k̃F

0

p2dpα(p) = Z , (32)

which is certainly satisfied by k̃F = kF, because the func-
tion α exactly satisfies∫ kF

0

dp p2α(p) = 0 (33)

(see appendix). We have numerically checked that there is
no other value of k̃F for which the number of particles is
Z. Therefore, to first order in g2

i the Fermi momentum is
not affected by the Hartree-Fock field. This means that the
present calculation respects not only Lorentz covariance,
but also unitarity.

In fig. 1 we plot the first-order Dirac mass of eq. (26)
(top panel) and the first-order momentum distribution of
eq. (31) (bottom panel) as functions of p/kF for kF =
250 MeV/c. The separate contributions of the various
mesons are displayed. In the present calculation we em-
pirically account for the short-range physics through the
meson-nucleon form factors Fi(k) = Λ2

i−m2
i

Λ2
i +k2 which cut off

the nucleon-nucleon interaction in a spatial region of size
∼ 1/Λi. Actually, for the sake of simplicity, we have ap-
proximated their effect by multiplying the self-energy as-
sociated with each meson by a constant factor (1 for the
pion, 0.9 for the sigma, 0.5 for the omega and 0.4 for
the rho): the form factors are indeed slowly varying func-
tions of the meson momentum in the integration domain.
The figure shows that the most sizable contribution to
the Dirac mass arises from the σ-meson, which reduces
the mass by about 30%, whereas the impact of the other
mesons is at most 10% (in particular the pion induces
a negligible increase of the mass): the total effect in the
present model is a reduction of the mass by about a fac-
tor 0.6, in accord with the findings of refs. [7,10,13]. It is
also remarkable that the p-dependence of the Dirac mass
is almost negligible.

As far as the momentum distribution is concerned, it
appears that σ, carrying an attractive interaction, induces
a depletion of the baryonic density at low momenta and an
enhacement of the latter in the vicinity of the Fermi sur-
face, in contrast with the effect of the other mesons. It is
interesting to note that the size of the Fock contribution in
the momentum distribution decreases as the meson mass
increases. This is in agreement with the fact that, at least
for quasielastic inclusive electroweak responses modeled as
we do here, the forces carried by the heavier mesons can
be reasonably well approximated by four-fermion point in-
teractions. In this case the HF approximation can be ex-
pressed as a linear combination of Hartree terms, which, as
previously mentioned, do not affect the momentum distri-
bution. Furthermore, and notably, the contributions aris-
ing from ρ, σ and ω cancel almost exactly. Thus, the net ef-
fect of the full interaction coincides with the one obtained

Fig. 1. The ratio m̃(p)/m of eq. (26) (upper panel) and the
momentum distribution per unit volume of eq. (31) (lower
panel) are plotted versus the nucleon momentum divided by
the Fermi momentum (kF = 250 MeV/c). The results ob-
tained by taking into account one single meson (pion: dashed
lines; rho: double-dashed lines, omega: dotted lines; sigma: dot-
dashed lines) are displayed together with the total result (solid
lines). The mesonic parameters are [24]: mπ = 139.6 MeV/c,
mρ = 770 MeV/c, mω = 782 MeV/c, mσ = 550 MeV/c,
g2

π/4π2 = 13.6, g2
ρ/4π2 = 0.84, aρ = 6.1, g2

ω/4π2 = 20,
g2

σ/4π2 = 7.78, Λπ = 1720 MeV/c, Λρ = 1310 MeV/c,
Λω = 1500 MeV/c, Λσ = 2500 MeV/c .

with the pion alone, and it amounts to an increase of the
nucleon momentum density by about 1% for p � 0 and to
a decrease of it by almost the same amount for p � kF,
in such a way that the number of nucleons is conserved,
according to the unitarity condition of eq. (19). It is worth
noticing that the reduction of the momentum distribution
near the Fermi surface due to relativistic HF correlations
is of the same size as the one arising from short-range
correlations of Jastrow type only, found in refs. [14,15] in
the spectroscopic factors of quasihole valence states. Note,
however, that this effect is very small compared with that
expected from a more sophysticated non-relativistic mod-
eling of short-range correlations [2], although one cannot
make this statement with certainty in a relativistic con-
text, since a relativistic version of Brueckner HF is even
more challenging to carry out than relativistic HF and
both constitute work for the future.

In fig. 2 the same observables displayed in fig. 1, the
contributions of all the mesons being included, are shown
for three values of the Fermi momentum: kF = 200 (solid
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Fig. 2. The ratio m̃(p)/m of eq. (26) (upper panel) and the
momentum distribution per unit volume of eq. (31) (lower
panel) are plotted versus p/kF for kF = 200 MeV/c (solid
lines), kF = 250 MeV/c (dashed lines) and kF = 300 MeV/c
(dotted lines).

lines), 250 (dashed lines) and 300 (dotted lines) MeV/c. It
appears that the effect of the mesonic HF field on both the
Dirac mass and the momentum distribution increases with
the density and it is roughly proportional to k3

F. However,
the origin of this dependence is different in the two cases,
due to the different role played by the various mesons.
Indeed the Dirac mass essentially stems from σ and ω,
whereas the baryonic momentum density is significantly
affected by all the four mesons.

A simple analysis of the kF-dependence of the OBE
contributions to m̃(p) and ñ(p) can be performed through
an expansion in the small parameter ηF = kF/m, whose
typical value is ∼ 1/4. Such an expansion has been suc-
cessfully applied to the study of inclusive and exclusive
electron scattering both for free and correlated nuclear
systems [16–20]. Remarkably, the ηF expansion has been
shown to be very useful for exploring the role of chiral
pion dynamics in nuclear matter [21,22].

When performing this expansion, one should pay at-
tention to the fact that the pion is much lighter than the
other mesons: this induces a different kF-dependence for
the pionic contributions, since kF/mπ cannot be treated
as a small parameter. In fact it is easy to show that the
heavy-mesons’ contributions to m̃(p) go as k3

F (the pion
contribution is negligible). On the other hand, in ñ the
pionic effect grows as k3

F, while the heavy mesons con-

tribute as k5
F. We recall that σ, ω and ρ almost cancel in

the momentum distribution (see fig. 1).

It is of importance to notice that the physics of real
nuclei roughly corresponds to the range 200 ≤ kF ≤
250 MeV/c: here our prediction for the Dirac mass, m̃,
is close to the one for the effective mass [8,23]. It is only
for larger kF that the two quantities start to differ sub-
stantially.

Finally, it is also interesting to note that the mo-
mentum distribution ñ(p) coincides with the free one,
n(p) = 2, for a value of p/kF, which is independent of
both the specific meson and the value of kF (see figs. 1
and 2). This finding can again be interpreted on the basis
of the above-mentioned expansion, which shows that the
function α vanishes for p � √

3/5kF.

Before drawing our conclusions, we would like to ad-
dress the issue of the relevance of our findings on physical
observables. In this regard we have shown in refs. [5,6]
that the effect on the electromagnetic response functions
including pionic correlations due to the modification of
the momentum distribution is negligible (see in particluar
fig. 13 in [6]). One could not say this a priori and so an
important conclusion of that work plus the deeper under-
standing presented in this paper is that at the level where
relativity is dealt with in a consistent way such correla-
tions appear under typical circumstances to be perturba-
tively small.

In summary, in this paper we have presented a rela-
tivistic analysis of the single-particle properties of nuclear
matter in HF approximation within a meson exchange
model. In particular, we have focused on the role played
by the pion, rho, omega and sigma on the Dirac mass of
the nucleon and on the momentum distribution. Whereas
the momentum distribution is not affected by the HF field
in a non-relativistic framework, in the relativistic case it is
slightly modified due to the renormalization of the spinors.
In this work we have quantified this effect to first order
in the coupling constant where the HF equations can be
solved analytically. Using this solution we have demon-
strated that the field strength renormalization function
exactly satisfies unitarity at this order.

Moreover, whereas for the Dirac mass, as is well known,
the effect of HF mesonic correlations amounts to about
30-40% and mainly arises from the σ- and ω-mesons, we
have shown that in the momentum distribution a cancel-
lation among the heavier mesons occurs and the total re-
sult basically coincides with the pionic contribution, which
amounts to a 1–3% effect, depending upon the density.
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Appendix A.

The functions A,B,C of eq. (5) can be expressed in terms
of the integrals

I(P,mi) ≡
∫

d3k

(2π)3
θ(kF − k)

× 1
2Ek

1
(P −K)2 −m2

i

, (A.1)

Lµ(P,mi) ≡
∫

d3k

(2π)3
θ(kF − k)

× 1
2Ek

Kµ

(P −K)2 −m2
i

, (A.2)

Lµν(P,mi) ≡
∫

d3k

(2π)3
θ(kF − k)

× 1
2Ek

KµKν

(P −K)2 −m2
i

, (A.3)

through the following relations1:

Aπ(P ) =
3g2

π

2

[
I(P,mπ) − PµL

µ(P,mπ)
m2

+
P 2 −m2

2m2
I(P,mπ)

]
, (A.4)

Bπ(P ) =
3g2

π

2

[
I(P,mπ) − PµL

µ(P,mπ)
m2

+
P 2 −m2

2m2

L0(P,mπ)
p0

]
, (A.5)

Cπ(P ) =
3g2

π

2

[
I(P,mπ) − PµL

µ(P,mπ)
m2

+
P 2 −m2

2m2

L3(P,mπ)
p

]
(A.6)

for the pion,

Aρ(P ) = 6g2
ρ

[
(2 + 3aρ + 3a2

ρ)I(P,mρ)

−3aρ(1 + aρ)
PµL

µ(P,mρ)
m2

+
3a2

ρ

2m2
(P 2 −m2)I(P,mρ)

]
, (A.7)

1 L is parallel to p since, choosing p along the z-axis, the
azimuthal integration in eq. (A.2) yields L1 = L2 = 0.

Bρ(P ) = 6g2
ρ

{
(3aρ + 2a2

ρ)I(P,mρ)

− a2
ρ

m2
Pµ

[
2Lµ(P,mρ) − L0µ(P,mρ)

p0

]

−
[
1 + 3aρ + a2

ρ − a2
ρ

2m2
(P 2−m2)

]
L0(P,mρ)

p0

}
, (A.8)

Cρ(P ) = 6g2
ρ

{
(3aρ + 2a2

ρ)I(P,mρ)

− a2
ρ

m2
Pµ

[
2Lµ(P,mρ) − L3µ(P,mρ)

p

]

−
[
1 + 3aρ + a2

ρ − a2
ρ

2m2
(P 2 −m2)

]
L3(P,mρ)

p

}
(A.9)

for rho,

Aω(P ) = 4g2
ωI(P,mω) , (A.10)

Bω(P ) = 2g2
ω

[
k3
F

3p0π2m2
ω

− L0(P,mω)
p0

]
, (A.11)

Cω(P ) = −2g2
ω

L3(P,mω)
p

(A.12)

for omega and

Aσ(P ) = −g2
σ

[
I(P,mσ) +

1
π2m2

σ

×
(
kFEF −m2 ln

kF + EF

m

)]
, (A.13)

Bσ(P ) = −g2
σ

L0(P,mσ)
p0

, (A.14)

Cσ(P ) = −g2
σ

L3(P,mσ)
p

(A.15)

for sigma.
The corresponding expression for the functions αi (see

eq. (29)), with α =
∑

i=π,ρ,ω,σ αi, is

αi(p) =
m2

i g
2
i

4π2Ep

∫ kF

0

dk
k2

Ek

Ek − Ep

γ2
i (p, k) − 4p2k2

fi(p, k) ,

(A.16)
where

γi(p, k) ≡ (Ep − Ek)2 − p2 − k2 −m2
i =

2m2 −m2
i − 2EpEk (A.17)

and the functions fi(p, k) are defined as

fπ(p, k) = 3 , (A.18)
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fρ(p, k) = 3

[
2(1 + 6aρ + 4a2

ρ) + a2
ρ

m2
ρ

m2
+ 4

m2

m2
ρ

+

(
2 + 6aρ + a2

ρ

m2
ρ

m2

)
γ2

ρ(p, k) − 4p2k2

4kpm2
ρ

× ln
γρ(p, k) + 2kp
γρ(p, k) − 2kp

]
, (A.19)

fω(p, k) = 2
[
1 + 2

m2

m2
ω

+
γ2

ω(p, k) − 4p2k2

2kpm2
ω

× ln
γω(p, k) + 2kp
γω(p, k) − 2kp

]
, (A.20)

fσ(p, k) = 1 − 4
m2

m2
σ

+
γ2

σ(p, k) − 4p2k2

4kpm2
σ

× ln
γσ(p, k) + 2kp
γσ(p, k) − 2kp

. (A.21)

The meson-nucleon form factors have been neglected for
simplicity. Their impact on the results is discussed in the
text. Using the above expressions, the unitarity condition
of eq. (33) follows, since the functions fi(p, k) are all sym-
metrical under the exchange of p and k, hence∫ kF

0

dpp2αi(p) =
m2

i g
2
i

4π2

∫ kF

0

dp
∫ kF

0

dk
p2k2

EpEk

× Ek−Ep

γ2
i (p, k)−4p2k2

fi(p, k)=0 . (A.22)
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